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SU-MM4RY.

.At the request imd with the support of the Engineering Diwkion of the Air Serwice, United
States &my, McCook Field, the Bureau of Standards undertook some laboratory in-rest.iga-
tiona dealing with air-cooled aviation engines, the resuRs of which were subfitted to the
Committee on Power Plants for Aircraft and by that committee recommended for publication
ns a technical report of the N’atiomd Advisory Committee for Aeronautics. In connection
with laboratory measurements of the heaklissipating power of typical engine cyIinders, a
mathenmticrd analysis of fin behavior was made amd is given m this communication.

The introduction contains a description of the paper which will assist. the general reader
who is not interested in mathematical detail in tiding those parts of the paper most likely
to prove useful tu him. A recapitulation of the. mathematical dewlopments is given in
Section IS and forms the statement of conchsions reached in so far as a mathematid paper
of this tp-pe may be said to have conclusions. NumericaI examples illustrati~e of these con-
clusions axe then giren, folIowed by a very brief suggestion of possible application of the
equations.

The problem considered is that of reduciq actual geometrical area of fin-cooling surface,
which is, of coursej not uniform in temperature, to equivalent ‘(coohng” area at one definite
temperature, namely, that pre-miling on the cybder wdl at the point of attachment of the
fin. This makes it possible to treat all the cooling surface as if it were part of the cylinder
wall and 100 per cent effective.

The quantities involved in the equations me the geometrical dimensions of the b, thermal
conductivity of the material composing it, and the coefilcient of surface heat dissipation between
the h and the air stresxn. Several assumptions of physical nature are thus necemarily in~ol-ied
in making the problem possible of solution. These are set forth in detail, and the Hmitatiofi
which result from them in applying the equations to numerical calculations are carefully
pointed out.

An expression for approximate h effectiveness is developed, based upon simple mathe-
matics and wry con-renkmt in form for engineering use. The essence of the paper is an
examination into the magnitude of the errors involved in using this expression tithout cor-
rection and a deterroination of the corrections needed for accurate work. The mathematical
expressions in-rol-ied are quite complicated, including Fourier’s Series, super Fourier’s Series,
Bessel functions of zero order of two kinds with imaginary arguments, etc. The redts of
the work are collected in graphical form in a series of charts, so that the design engineer can
use the simple formula iirst developed and apply to it corrections readiiy read from the
charts., thus avoiding entirely alI higher mathematics.

L INTRODUCTION.

The equations vrhioh express the flow of heat in a metal in terms of simple physical proper-
ties are perfectly detinite and adapted to numerical computations, although usually some-what
cumbersome and tedious. In applying these equations to the fins on the outside of the cylin-
dem of air-cooled internal-combustion engines, the chief obstacle to numerical work is the
great uncertainty of the value to be assigned to one important physical quantity, the rate of
dissipation of heat from the b surface into @r under the conditions S.mmmbg the h. W
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important deficiency seems to have discouraged any widespread use of the equations of heat
conduction in considering the problem, since deductions made from them could be trusted
only with rather wide limits.

With the increasing lmowIedge of rate of cooling in an air stream, it has become more
worth while to compile the information obtainable from a mathematical ma] ysis of the prob-
lem. The details of such an analysis are not of sufficient general interest to warrant tho average
reader in folIowing them cIosely, but it is believed desirable to render them uvailable for re.fer-
ence by those who are working in the same field. The equations which have to do with this
subject are bulky, the algebra and integrations tedious and time consuming, and the chances
for error are high, although no especially intricato or abstruse reasoning is involved, nor is there
much difficulty in interpreting final results other than the necessity of a carcfuI examination of
the relative numerical size of the various terms.

With a fulI appreciation of the tax imposed on a reader by reason of the foregoing fads,
the authors have prepared this paper in a form which endeavors to meet the following speci-
fication:

(a) To segregate, for the benefit of all who are interested in the general subject of air-
cooled engines, a general skeleton of the analysis, including the discussion of conditions which
bear upon the problem, statement of the exact assumptions to which are applied the mathe- -
matical development and the conchsions resulting therefrom, with a few examples of numerical
computations to illustrate the practical application of the mathematics.

(~) To interline with the above, in such form that the general render may skip it without
losing the thread of the development, such details of mathematical transformation as will be
needed by the specialist to reproduce the equations or use them to advantage in their applica-
tion to his particular probIem.

(c) To omit all details of algebra, integration, arithmetic, etc., which me merely the
mechanism of the mathematical demdopment. Although these steps are essentia~ to an
rtcceptanco of the validity of any of the deductions, it must be left to the critical reader to supply
the gaps, because the paper is sufficiently complicated in meeting specification (b) without
such ‘additional weighting.

The basic principle of design which characterizes an air-cooled engino is the providing
of some means to increase greatly the natural surface by additional cooling surface, the purpose
being to keep the engine cyIinder wall temperature down to a value below the upper limit ,
set by satisfactmy engine performance, This additional surface takes the form of cooling
fins, usually made an integral part of the cylinder barreI and arranged either longitudinally
along the barrel or circumf erentially around it. The problem considered is that of reducing
actual geometrical area of cooling surface, which is, of course, nonuniform in temperature, to
equivalent “ cooling” area at a definite, easily specified temperature. This may be done by
finding an expr~sion for the effectiveness of fin surface, i. e., the ratio of the amount of heat
dissipated by unit area of fin surface to that dissipated by an equa~ are.n of cylinder wall surface
with the same tempearture as that at the fin base. This will make it possible to treat all the
cooling surface as if it were on the cylinder, wall and had 100 per cent effectiveness.

11. APPROXIMATEFORMULAFOR EFFECTIVENESS OF COOLTNGFINS.

Two cases occur in practice: (1) Circumferential fins, usually of tapering thickness, with a
base temperature that may change from point to point; (2) longitudinal fins with similar con-
ditions of thickness and temperature. A direct analytical investigation of each case in all its
generality is quite difficult and has not yet been completely worked out. In this paper an
indirect attack on the general problem is made by a method of successive approximations.
The dectiveness is first computed for a simple case, where several simplifying assumptions
are made. Then the limitations of these assumptions are. removed, one or two at a time, and
the necessary correction made to the first result. The effectiveness j is, therefore, expressed
in the form

f=fl +A,j+AJ+ . 0
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GESEEAL ASSUMPTIONS.

Four general assumptions of physical nature are made that apply to e-rery case considered
here:

(I) Quantity of heat transferred per tit time from the metal surface to the air is pro-
portional to the temperature difference between the metal and the air.

(2) The coefficient g, heat transferred in unit time from a unit surface per unit temperature
difference, is constant o-rer the h surface.

(3) The h is symmetrical about a plane through its middle and approximately paralIeI
to its faces. ~

(4) The temperature at a given point is independent of the time.
Assumption (1) is known as Nemton’s Law of CooIing. It has been found to be sensibIy.

true for very high velocity air-stream cooling in such cases as are under consideration.1
Some prelimimwy measurements of heat dissipation by air-cooled engine cy~ders made in

the laboratories of the Bureau of Standards also indicate the -didity of the assumption vzithin
limits necessary to work of t% kind.

Assumption (3) is obviously true mechanically except for minor inequalities of manufacture
which on an amrage o-rer a cylinder would be inappreciable.

.-
Physically, there is marked

Iack of scpnmetry about such a plane if the k be oblique to the air stream, but this lack of
spnmetry has ta do with assumption (2).

.&smption (4) protides a working basis that is entirely ‘acceptable. Questions of engine

design must be settled from considerations of cooIing capacity under ffl load and continuous
operation, -when a stead~ temperature distribution exists. A cooling system wfich fl meet
this demand will obviously meet the less stringent cooling requirements in-rol~ed in starting
up and approaching temperature equihbrium. The rapid variations in temperature of the
inside wall of the cylinder between explosion and intake are quite damped out in their effects
on fln temperature. The validity of the assumption has been demonstrated by experimental
e~idence.2

-&smption (z) iIWOIWS, amonggt. other things, either independence of the heat transferred

from a 6n to an air stream and the -relocity of the air stream, or else the assumption of constant
velocity of the air stream orer all portions of the & The fist hypothesis is untenabIe: the
second one is discussed below. Experimental data are very incomplete. The assumption is
reco=tized as weak, but in the present state of knowledge it is about all that can be done. It
is known to be justifitible in 10%wtubes and is probabIy not far wro~u for Longitudinal fins with
fairly open spacing. One set of measurements’ on a plain cylinder without b, a small cylin-
drical rod (diameter 2 cm., ~ inch) indicated that with the air strenm normal to ‘the U& of the
cylinder, the variation in air velocity, front and rear, was of the order of 30 per cent, namely,
a difference of 15 per cent each way from the mean value. British measurements on air velocity
between fins indicate a change in g from tip to root of longitudinal fi of less than 15 per cent.
These meager data would suggest that if an average value over a k were taken, the de~iutions
from it would not generally be more than 10 or 15 per cent. The error after integration in such
cases is generally less than the origgal error, so that the result with this approximation is
probabIy in the n~~hborhood of the true ~alue.

SIMPLIFYING ASSUMPTIONS.

In addition, the following simplifying assumptions gi-re a simple probkrn which serves as
a basis for more compIete amalysis:

(1) The temperature across the fin thickness is sensibly constant.
(2) The fin is so 10WOthat the effect of the ~~posed ends (of longitudinal fins) is neglible.

~A. E. Gibson. Automotive Industr@ May U, 1923, P. lIOJ. T@ries and Pmctkes Lnthe Air CoolfnS of Enzines.
I Judge, ” EUgh#peed Internal Combustion 13ngines,” pp. IU7-K19.
*T. E. Stanton, Great BrftaIn Advisory Committee for Aeronmtlcs, Report 94, 191.?&lZ,p. 4i.
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(3) The heat loss from the exposed edge can be accounted for by imagining the width
extended by a distance equal to one-half the fin thickness at the outer edge and assuming no
heat loss from the end.

(4) The base temperature is consiant. -
(5) The h thickness is constarit.
(6) The fin is longitudinal.
The details of assumption (3) are illustrated in Figure 1.

The edge abc at n temperature 0, .diesipates some heat AH,. If d and 6C be swung around
to ab’ and c6’ and the space filled in with metal, the temperature,drop from a to J’ will be small
and these surfaces will dissipate practically the same amount of heat as before. The other
simplifying assumptions require no explanation.

It will be shown later that all of the Af’s are small compared with f’, so that the cross
products which represent the effects due to the joint action of several disturbing influences
may be neglected and only first-order effects due to single causes need be worked out.

OUTLLVE OF THE GENERAL PLAN OF MATHZMA’MCAL ANALYSIS.

First,~ is computed on the basis of all six simplifying assumptions stated above.
Second, ~ is computed with assumptions (1) and (3) removed, Thus j–fl gives Al j+

A3f+ A:,, f. These are shown ta be negligible for all conditions prevailing in engine work.
Third, j is computed with assumption (4) removed, giving AJ, which is zero.
Fourth, j is computed with assumption (5) removed and replaced by the one that the

sides me straight, and hence the thickness tisa linear function of the distance x from the fin tip.
This gives A,f, which is often not negligible. If A is the ratio of the thickness at the tip to the
average thickness, then AJ may b~ expressed in terms off’ and L Its value is computed for
several values of A and the results shown graphically on a chart.

Fifth, f is computed with assumption (6) removed and a longitudinal fin replaced hy a’
circumfenmtid one. This determines A,G~. If p is the ratio of the inner radius to the outer,
f maybe expresed in terms of fl and P ody, so that the results for ~ are expressed graphically
in the same way as above.

By means of these charts, f can be found with a sufficient degree of approximation for the
most general case.

tit
some .. . .

(1) Computation of Y. (The approximate function to represent heat flow in terms of
geometrical and thermal properties of the fin.)

Let q= coef%cient of heat trimifer from surface. ~
w= true width of fin.
t = tin thickness.
x = distance from the cylinder wall.
f= fin fdlectiveness.
k =fin conductivity.
9 = temperature of h above the air.

#0= temperature of cylinder wall above the air.
H=heat dissipated by the fin per unit time.

H,= heat dissipated by equal area of wall surface per unit time.

w’= corrected fin width = W+ ~.
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By introducing the simpIify@ assumption- (3) and (4), the boundary conditions are:

do
,&=O when Z=Wf

e=60whenx=0 (1)

The fundamental equation of heat trader’ under the conditions corresponding to assumpt-
ions (l), (2), and (5) is’

g-?l: (2)

The solution of this equation in the form most convenimt for this work is .

(?=A Cosha (Z–B) (3)

where 4 and B are arbitrary constants of integration and a is an abbrwiation for ~i2g/kt.
When A and B are determined to sattiy the boundary conditions, stated mfithem~ti~~Y

in (1)
8=6 cosh a (z–w’)

o cosh awt

The rate of heat dissipation frcxn a unit length of finis computed by an integration with o
respect to x from O to wt.

.s J
~t

E=2 “’g Odz=-#& , cosh a (z–w’) dx
o

The heat dissipation from an equal area (2w’) of cyIinder wall at temperature 19eis

and therefore

This function
which will serre as

H,= 2g90w’

-ft=E– s~! tadaw’
g–w, =O:aw) , cdl a (x–d) ax= ~wf

(tanh d)/aw’, for which &e single letter ~ VZU be
the basis of discussion for much of the fol.lowirw work.

(4)

(5)

used, is the function
Under a~erage con-

ditions of Practice it vdl be found sufklciently exact to serve as ti~ bmis for all computations.
--

—
III those c&es where it does not fit with ficimt accuracy, it W be found convenient to USe

—.

it es a principal term plus necessmy correcting terms. The principtil properties of the function
therefore merit attention.

When aw’ is increased, the -ialue of tanh a w’ increases Ekevrise, but rather slowly, and
although reaching 0.9 when rzw’= 1.50, it does not increase beyond 1.0, no matter how kge
awl becomes. The ratio f’, therefore, starts at unity and graduaIly decreases to zero, when
plotted against values of am’. This plot is shown in Figg 3, where the single letter u is sub-
stituted for aw’.

(6)

4 TIM mcthrxf of derivbrg thh equation ls espbfnd fully Knefemen~”textbcmks on heat. The dMeremca in quantity d heat conducted hrto
an elemental slab at coartite I and thst eondueted d st r+tfz I& in tie e@Ubrkn ewe, the amount thstesmp= into the air tbrcugh the
surfam &. This eqnellty, when common fectom me cancefed, k the equstfon (2).
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Figure 3 shows that f grows less as u increases, whence as w’ or g increase, or M k or t

docresse. That is to say, the effectiveness of a fin decreases as—
(1) The fin width is made greater.
(2) The fin is made thinner.
(3) The fin is made of material with a poorer thermal conductivity.
(4) The coe%icient of heat dissipation to the air increases.
This last statement indicates that fin effectiveness is relatively lws at higher air speeds,

since the value of q increases with air speed.

.

Vohes of u
fiti u by ~its WWVSI If theyFig. 8.-Cirve showing functfon —.%

belong to a mutually conefetont system wIII do to measurethe above
four quantities and w~ Iead h the samo number for U.

III. CORRECTIONTERMS TO APPROXIMATEFORMULA.

In the use of the formula (5) derived in the preceding section, it is very necessary to know
the departure from exactness which has been introduced by use of the simplifying assumptions
which are obvious deviations, at least to a small degree, from the conditions which actually
prevaiI. This investigation of the order of magnitude of the several correction terms involvos
considerable tedious mathematics which are incorporated in the paper only to meet the needs
of a specialist in the field. The general reader will tid the conclusions summarized at the end
of the chapter.

(1) CORRECTIONS FOR HEAT DISSIPATION FROM EDGE OF FfN AND POR “ CROSS-FLOW “ IN FfN.

This correction is det&mined by solving the problem as stdted initially without the aid of
Simphfying assumptions (1) and (3) but with the aid of the remnining simpltications. The
difference between the solution so obttied and the function defined in equation (5) above
shows the value of the correction which would be necessary to the latter to take account of the
two factors of this title.

x- o X.w

sowre

The problem is a straightforward development of two-dimensional heat flow’, in which the
boundary conditions are stated mathematically as follows:

With the origin of coordinates located as indiwted in Figure 4, the axis y = O is the median
line of the fin, ancl from considerations of symmetry there can be no heat flow across the median
plane, a condition expressed mathematically by zero temperature gradient.

—. -T: -..— u..+
*Byerly-FourlsrsSeriesandSplmkalHarmodm, art. 59, p. 102, ei[tfon of 1902.
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Along ‘y= t/2

(this face being one which is diss~pating heat to

Alongz=w

the air).

(7)

(8)

(9)

.Alongr=O 8=L90 (lo)

(tl& edge of the& being the one integral with the cylinder vudl and maintained at given con-
stant temperature Q. The fundamental equation of heat tramfer for this problem is

&’19:&9_o
h ap

(11)

which, being of the second order in t~-o variables, cam include in its primiti~e four arbitrary
constants apd permit of applying the four conditions (7) to (1O) for the determination of such
constants to give a complete solution of the problem as stated.

The convenient form for the primiti~e is

$=;MAm cosh a (x–B) COS a-y (12)

which contains three arbitrary constants A, B, a and satisfies the condition (7). The de-relop-
ment of condition (8) leads to determination of a as any solution of

Then the value of B is defied in terms of a by the use of condition

a tarih CY(B-wI)=f

Lastly, values of Am must be selected to conform to condition (10) in
already speci6ed. These values of A must satisfy

80=+A. C!OSh d COS q

(13)

(9) leading to

(14)

terms of the a and B

(15)

The possibility of determining values of& to satisfy this relation has been established by
workers in the field of Fouriers Series and other harmonic expansions,” and while the particular
form here appfied may not identify exactly vcith those commonly found in the textbooks, it
seems quite unnecessary to supply here any of the intervening transformations. It is adequate
evidence of the validity of the assumption that d&ite values for & may be found if we pro-
ceed to fmd some which deihe a convergent series.

The principaI reductions will have to do with equation (13) and the tdgebra is simplified
considerably by the use of a parameter # in place of c, defined by the relation

.

(16)

#ByeI1y-Fomiers Series and Sphericu.1H8noouI C9,pp. US-121.
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It maybe noted that equation (13) is or-mwith an infinite number of real vrdues of a or @
satisfying it, whereas equation (14) has but one mdue of B for tiny given value of a, tho hyper-
bolic tangent being a single valued function. To dispose of this cquat.ion and replace it by a
series, th~ quantit~ B is r~placecl by a new parameter-e, defined by -

In terms of e and

B=w+;+E (17) .
.

1#1the revised equations (13) and (14) take the form

@tan@=*” - (18)

(19)

With a & determined as a root of equation (18) and the corresponding CMdetermined from
the series (19), we must select an Am to give the expansion (15) which in the new pmmnctelw is

and then substitute all these in (12) revised to

(20)

(21)

The details pertaining to the proce~ just outlined are tedious tmd of interest only to the
worker who desires to check the development. Multiply each side of (20) by cos (z#kY/~) dy,
where & is any root of equation (18) and integrate for y from O to t/2.

and therefore vanishes for those vrdues of 1#1~and @k which are roots of equation (18) except
foy the particdar choic,O dk = ~~, where the indeterminate form of the expression introduces
the possibility of finite value. It follows, therefore, that the sumnation on the right-hand
side of equation (22) can consist of no more than the single term given “by the equality of m
and k, whence

J
tp

2’m(~+i+’w’@%”2- I&=A,n cosh ~
o goCos t Y

‘A~cOshr+(w+~+’m)lx:[l+’:f:ml
From which

4~~- —sech
t +(w+~+’m)f:e”cm? gyd’

(23)

~+Sin 24.
x.

The above value of Am is in a form for a generaI expansion of 00 as any arbitmry func-
tion of y, namely, for any specified temperature along the thickness edge of the fin (i. e., along
the cylinder wall). This generality is too complicated for consideration in this paper, which
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has been limited to the case of 80 being constant. This condition may therefore be intro-
duced at this point into equation (23) j which reduces to

(24)

~. value of& used ~ equatiOn (ZI), ~th the tid of equations (18) and (19), completes

the solution of the problem a-s a problem in thermal conduction.
For application to the purposes of this paper, it is desired to compute the effectiveness of

the fin surface, which has been defied above as the ratio of the heat dissipated by the fin to
the heat which would be dissipated in the same time by an equal area of surface all maintained
at the constant, uniform temperature O., which is here the taaperature of one edge of the
fin. De&mate this ratio as H/H,, and retain the previous notation tith ~ for coefficient of
surface he~t dissipation, reme~be~g that o is me~ured on a
chosen at the temperature of the air strem cooling the b.

Ho= g (2w+t) 6, H=qjhLS

f=g= 1

2(w+;)5’oJ~

temperature ;cale with its zero

To lidegrate over the ckipating surface, we have U =&c along the two fin surfacw for
unit length of & and dS = dy along the edge opposite the cyIinder wall.

seds=2fi’=~&+2s:’’-”“’-
J% s*ey.t)zdz + 8.-W dy

-f= Q o

()
do w+;

From equation (21)
24*

&~=!&li. cosh ~
(

t$—~—_—Em
.2 )

COs+.
I

(25)

9... =% Am cosh ~
()

2& t 2cflm
~+% Cos ~y

1

and by substituting these -dues in ecpation (2-5) and reducing the result,

In the use of equation (26) the terms of the summa tion are given. by using for & in success-
ion sll the real roots of equation (18)

(18)

g =heat -dissipated from .fi to air stream per unit time per unit area of b surface per
umt temperature ddhrence.

t=iin thiclmeas.
k= thermal conductivity of tin material.
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From each successive value of d~l the corresponding Gmis computed from equation (19):

(19)

It is obvious that equation (26) is much too cumbersome for everyday application. From
the standpoint of pure mathematics it is the equation to choose in preference to equation (5),
being based upon more acceptable assumptions and including as a special case the conditions
leading to the solution expressed by equation (5), From the mathematical viewpoint, correct ,
procedure would be to solve the problem in the more generrd form, obtaining equation (26)
for effectiveness of a i%, and then to examine the relative magnitude of the terms involved
and leave out the small ones. in order as successively less exact approximations are desired.
In this way one might approach a comparatively simplo formula, either equation (5) or an
equivalmtrl for all usual applications. In this paper an alternative presentation has been
adopted in deference to the algebmic complexity of the processes in the more general case,
and it has been deemed wise to develop first the comparatively simple solution which is good
enough to apply to most air-cooled engine cylinder work, “showing how good or how bad is
the approximation by a later development of the more exact relations.

These more exact relations are too complicated for convenience. The course outlined
above can be put in practice, not by a general consideration of the magnitude of each term in the
series, but onIy by specific numerical computation of these terms for one or more typical sets
of conditions.

The units selected for g, k, and t are immaterial so long as they are consistent. Thd factor
gt/k, which entem the computation, is dimensionless and independent of the unit system. If it
be desired to metisure t in inches amd g in Btu. per minute per square inch per degree Fahren-
heit, then it is only necessary to express k, the thermal conductivity, in Btu. per minute per
square inch per unit temperature gradient in degrees Fahrenheit per linear inch. The inter-
national units are used below. Assume:

k= 0.10 caIories per second per din.’ per unit gradient in ‘C. per cm,).
f= ~.~O~m(calories per seymd per cm.’ per “C.).

w=3.O cm.
This set of values is for a steel fin (k = 0. 10) of excessive proportionate thickness (one-aixt.h

of the width) and huge absolute dimensions, and in a very high speed wind stream. (q= O.008
probably corresponds to a wind velocity of 90 meters per second, 200 miles per hour.) These
conditions are the ones which should exaggezat e the effects of ‘t cross ffow’ ~ and dissipation
from the thin edge of the fin, the two factors included in the more complicated solution and
omitted in “the simpler. “By “cross flow “ is meant taking into account the two-dimensional
flow of heat in a plane section of the fin rather than treating it as linear flow from the engine
cylinder wall toward the outer edge of the h, sensibly parallel to the flat fin surfaces and with
but a negligible component perpendicular to these surfacea or across the h. The case seIected
is therefore unfavorable to the approximate equation and should indicate the largest corrections
to it necessary in any ordinary application.

Q _0,008x0.5=o 020
2k– 0.20 “

The values of $~ are given by the roots of—

(27)

(28)

which is conveniently solved by graphical means by plotting vaIues of tan o and of l/50@ and
reading the value of .#Iat the intersections, namely, where the two functions equal each other
(fig. 5). The value of l/50#J are so smsl for all values of @greater than that corresponding to
the fist few roots that the function may be taken as coincidmt with the axis and cutting the
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tangent curves at nm. The fkt root maybe read from the graph of figure 5 plotted to a scale
sufficiently open or may be approximated ualytica,lly by the series expansion,

0.02= 42+44+ ?!4!!
z 15

(neglecting high povrers of @because it is noted that @is mu& smaller than unity),

0-’4’4=’[’+$+%1’

.15

/0

.05

00

0 I 2 3 4

~IG. 5. Graphic 9ohltion & t6n X +

#

To solve this it is evident that @is so cIoseIy 0.1414 that the latter maybe substituted for

~’ and& ~thout appreciable error in comparison with unity.
0.1414 =@ [1 + 0.00667+ 0.00005] *

= #J[1 + 0.00336]

4=0.~414 X[l – 0.003361= 0.1409
To find the second root, #,, the relation tan (T+ a) =tan a is the key to the process, be@

in mind that 4Z is so wry close ta r as to admit of some approximations which are very exact
while at the same time wry simple. Omitting details

%=m+0.00635
The departure of@* from 2r wnd of #f from 3w, etc., is quite inappreciable, whence the dues

of @for equation (26) are:

%=0.1409 #,= 3.148 4,= 6.28 $,= 9.42, etc.
The next step in computation is evaluation of 6. from equation (19).

~&=o.020
k 0.100 12 so

2k ;=m” “

F =-0=0.1419
-#

0.020
&=o.oo322 +, 0.1409 2 452=3m= 0.0063

& = 12.50 (0.1419)a
[

I +$ (.1419)’++ (0.1419)4+. . .1=0.25356

[
q+;= 12.50 (0.0063)’ 1+; (0.0063)2 + . . .1=0.00049

—

—

—

q +
[ 1;=12.50 (0.0032)’ 1++ [0.0032)’+. . . =0.00013
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In substituting the values just obttined into the terms of equation (26) it is worth while to
tabulate the intermediate steps for the fist term (m= 1) in order to illustrate the order of mag-
nitude of the diflerent factors and to form a guide for estimation of the charwes h be exbected
in using somewhat different values fork or q ~r t from, those selected for tliis example.

(#JI= 0.1409 q+ ~ = 0.25356 w+~+~=3.253ti

2@,=0.2818
241 t

()--T z+% ‘0’1429 “?(w+i+’J=’834

24
()

sin 2@l= 0.2780 Sinh=l ~ + e, = 0.1434
. ‘~h%w+i+’J=oo’50

241 t
()

Sin ‘c#l= 0.0197 cosh — –+6, = 1.0102
t .2 cOsh+(ti+~+’’)= 3”2’

f=L I-“---27808Pg5051+Oo~+~0:1409 (O5598)
2

241m t
+tm 2 sin2 &

cosh—-
()t Z+’m

“ ~ 1;”;. (2@m+ Sil?i?i
2 Cosh?(w+:+’m)

.

(29)

f= O.1538{3.524 [0.950–0.0447] +0.4995 X 0.315} +2, etc.

-0.1538 {3.189+0.1572} +2, etc.

‘h ’27+ 0“0127) tanh 12.59 (3.0005)
‘0”5148+0”1538 3.148 (6.30 +0.013)

_sinh 12.59 (0.00049) 1+2Sina (r+ 0.00635) cOSh 12.59 (0.00049).—..— ..
COSh12.59 (3.0005) 3.148—X6.31 1

—— + Z , etc. (30)cosh 12.59 (3.0005) m-s

Reduction of the terms in the above expresion (30) indicat@.s by inspection the general
trend of each term in the later series. Cosh 12.59 x 3 is enormous and the two cosh terms in
the denominates above and in aH succeeding terms are so extremely large with respect to any-
thing occurring in the numerators that the terms containing them are inappreciable. AIso,
the tanh function of a large argument is umity, whence there is left, to evaluate, only

Sin (%+ ().0127) ~d ~m sin 2(#lm
3.148 (6.30 + 0.013) 3 @m (z@m + Sin Z+m)

where d~ for m= 3 and greater is so near a mtitiple of r that sin zom d be inappreciable.
The numerical term above is

0.0127
3.15 X 6.31 ‘0”00064

arlcl
f= 0.5148+0.1538 xO.0006=0.5149
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?Xis due of fshould now be contrasted with the approximate value~’ giwm by the simple
expression, equation (5):

tanh au?
f= .wr /

t.=l ~ Ur=w+
2

q= 0.008
l!=-o.lo
t=o.50

W=3.00
.W’= 3.25

aw’ = 1.S36
tanh aw’ = 0.9S0

(32)”

The diilerence between f‘ and the more exact value of the effectiveness which is given by
j“ in equation (31) k therefore not quite 3 parts in 500, or less than 0.6 per cent.

It thus appears that the error introduced by neglecting the tranmerze temperature gradient
and assuming the e~ae correction to be simply t/2 added to w is less than 1 per cent in this exag
gerat ed instance. In ordinary cases it is negligible entirely, for an hminum fin, g= 0.003
(air speed 70 or 80 mi./hr.), k= 0.50, w’ = 2.0 cm, t= 0.15 cm, ~=fl, within less than 0.1 percent.

(2) CGERE~O?W POE VARYING BASE TSMPEEATURE AND EXPOSED ESDS.

In this proof the edge correction that has been pro~ed to be suilicient, i. e., w-I-t/2 for u
and 1+ t/2+ t/2 for the length, wiII be assumed and the transveme temperature gradient
neglected. Hence, the problem becomes that illustrated in Figur6 6.

The plate of width w is replaced by the fictitious one of width w‘ with the origin at the
outer or free e~ue, so that the plane x= w’ becomes the engine cyIinder wall maintained at a
given temperature 8., assumed constant as to time but not uniform -with relation to the coor-
dinate z. By neglecting the tran.wmrse (y direction) temperat.uze gradient, the fundamental
ec~uaticm for the probkm takes the form

which must satisfy boundary conditions at the four ec@s as follows: “

when
al

2=0 %=0

(33)

M
Z=r=l-?-t %=0

M
x-o ‘s-”
x=.~ O= t?,= F(z)
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where Z@) is a prescribed function, given for any particular problcm. The boundary con-
ditions for the two flat surfaces of the fin, which are cooled by the air stream, havo been incor-
porated into equation (33) in the process of deducing it from fundamentfil considerations.

A convenient form of solution of equation (33) for this application is

O=attcoshazcosfflz (34)

where a and d are connected by the relation

2q
$–p=~ (35)

because in the form selected for (34) the boundary conditions for z = Oand z = Oare autmmtically
satisfied for all values of ~ and a, leaving these two parameters to bo determined by the remain-
ing two conditions. The requiretient at z = 1’ is satisfied if

where m is any integer whatever. The solution is complete in the form

(36)

(37)

provided values of Am are determinable, so that when x= w’ the function (37) identifies with
the given F(z). This is a common I?ouriers Series development and requires for Am the value

2 s1’
Am=

II

F(z) Cosydz
“ 1’COSII 2g+?n’d ,

kt?o

(38)

-.

lt is not worth while for purposes of this paper to assume any of the more probable forma for
Z’(z) and complete the eolution of such special cases. It happens that the general conclusion
which is desired, namely, the difference between the approximate value of fin effectiveness which
is given by equation (5) and the more exact value given by equation (38), is capablo of being
found in terms of a general form for F(z) unreduced to special cases.

To compute the effectiveness of the fin, proceed according to the definition to 6nd expressions
for the heat actually dissipated and that which would be dissipated if each portion of the fin were
at the temperature of its contiguous cyIinder wall. The latter quantity of heat is:

s1’
HO=2w’g F(z) dz

o
and the actual dissipation is

From the ratio of the9e, the effectiven*j is

w’ 1’J’sOdxdz

J-i- ‘*,,
u+

J
F(z) dZ

o

(39)

(40)

(41)

When the value of d defined by equation (37) is substituted in (41), it contains the expression

sII

COSY dz
o
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which is zero except for the value m =0, and, accordingly, the worhg expression for equation
(41) is much simplified. The zero term of a cosine Fourier expansion is haIf the fornnda for the
general term; that is to say, equation (38) reduces to

and

(42)

The substitution in equation (42) of the =panded form of& reduces the result to the form

(43)

whioh expression is identical with the value given b-y equation (5), derived on the hypothesis
that the fln base did not vary in temperature aIong its length. In other words, the nature of the
variation of temperature along the base of the @ inokiing a uniform distribution as a special
ca~e, ~. immat&al, in so fsx as the function to express fin effectiveness is concerned.

The complete solution for a wedgeshaped fln in-t-ohs rather complicated mathematics, the
terms involved being BesseI functions with imaatiary mguments. The practical form of appli-
cation of the scdution, expressed in manageable form for m.unerimd work, is to plot a curve or
series of curves giving thi correction to be applied to a simple expression for the effectiveness
the nearest equbralent parallel-ided fin. A digest of the mathematical treatment foIIows.

‘4=L-

Of

.

bt the fi be wedge-shaped, as shown in Figure 7, witi straight sides, the thickness tapering
from a -due&at the fin base to a value t, at the fin tip. The fi width maybe considered ex-

.

tended in amount tJ2 to account for tie heat dissipation actuaIIy occurring from the surface
at the end (Q and the fictitious end is then treated as if blanketed completely. The origip of
coordinates is most conveniently located at the fictitious end and the problem is thus stated in
terms of surface dissipation aIong the two sloping surfaces of Figure 71a blanket at z = O; namely,
dtI@c = O in that plane and 8 = 80 at z= w + tJ2. The fh is to be considered so long (direction
perpendicular to plane of the paper) that the end dissipation is immaterial.

For derivation of the fundamental equation, consider the heat flow per unit time in a
section dx at the point x, the corresponding fin thickness (t) be& defied in terms of the angulax
parameter a shown in Figure 7.

:.

t=t1+2 (’z-;) tm a.
\

(44)

&2 tan a.
,
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The heat flow, per unit time per unit Iength of fin, at the plane x is

~+@
ax

(where k is thermal conductivity of the fi, 6 the temperature at point z and x and t as defined
in fig. 7) so that the difference between the heat flow into an elementary slice at plane z and
out at dane x + &c is

L

By means of equation (44) this expression becomes

(45)

In the equilibrium condition, this quantity of heat equals the heat dissipated by the two
ehxnents of fin surface, namely,

dx
2qo —

cm a

(q= heat dksipation per’unit area per unit time per unit temperature dfierence, fin surface to
surrounding air; d= temperature of h at point z, as above, the scale of temperature used being
such as to have zero for the temperature of the air) .-

(46)

This equation is not one for -which a solution maybe recognized readily, the term causing
trouble being the x in the coefllcient of the second derivative. By a change of independent
variable, involving considerable algeb&, the equation reappears in a well-knovm form, similar
to Fourier’s equation, B’essel’s equation of zero order. The clue to the necessary change of
variable is furnished by ex amining equation (46) in the standard form with unity for the initial
coefficient,

cl% 2 tana (id w
@+t,(I–tana)+2z tan afi=kcosa[t,(l-tan a)+2X tan a] (47)

and trying substitutions that will simplify the coefficient of ~. (It may be noted at this point

that since in equation (46) 9 has been expressed as a function of only one variable, x, it is un-
necessary to distinguish further between partial and total derivatives.) The change of variable
is defined by

[
1.P==4b2z+;$a;~a) 1 (48)

where
~z–k!!a

and the equation rewdting from the transformation of (47) is

(49)

which would be Fourier’s equation were the terms aIl positive. Upon substituting (iP) for u,
the equation goes into this form, whence the solution of (49), as given, is

8=AJO (ip) +BKO (ip) (50)

where A and B are arbitrary const~ts and JO and ~ are Bessel’s functions of the two kinds,
order zero. Before discussing briefly any properties of such functions relevant to this applica-
tion, it is well to examine the more finished form taken by the equation when A and B arc
determined to satisfy the terminal conditions mentioned above,

(U
~=0 when z=O and 0=60 when z=ti (51)
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Them do not correspond to simple aIgebraic expressions when expressed in the variable p.

d? pd$—=—
dp 25’%

so that for aIl fite -dues of p the derivative di?/dP vanishes whenever d@@xvanishes, whence

(52)

In order to appIy these conditions to the determination of A and B in equation (5o), it is
necessary to make use of the properties of B-cl functions which have been clisco~ered by
mathematicians working in the field. Eva a brief retiem of such properties is far beyond the
scope of this paper.7

The BesseI function of the second kind, designated above as the K function, is, for a com-
plex mriable, generalIy repIaced by a slightly different form of function than that for which
the symbol K is common in mathematical literature. The common use of K makes it the
function related to J, so that

&wm3ingIy, with an imaggary argument (h), a mmpIex reIation would resdt,

and it is convenient to take the term in log i over on the left-hand side of the abo-re equation
and detine a new function which it will be noted is a real function in z. It is beyond the scope
of this paper to consider in any detail the properties of such functions and the reasons for seleot-
irg particukr forms as the elements in which to express solutions. Unfortunately, there is
conwderable difficulty in comprehending the literature on the subject because great confusion
occurs in the notation mployed by different writers. The original extensi~e treatment of
complex Bessel functions is due to Hankel* and the spbol IZ is common for such functions
but with exasperating lack of untity in regard to the exact d@tiona of such functions,
which in the hands of various writera di.iler by several additive constants or constant nmlti-
pliers. For the purposes of this paper, the ~ function employed will be that tabuIated by
Jahnke and Emde~ dafmed by the following series:

. .

[ ( 2)@%+(1+:+&2HfQ2+.~“]whwe10g:=O-11iHO (it)=: J. (it) Iog ;’+;+ 1+~

which it will be noted is a real function of ~, since Jo (b) is always real.
Rewriting equation (50) in terms of this particuk form for a second solution,

e =AJO(@) +BiHO(ip) (53)
from which

d
-& = –AiJ*(ip) +BH1(i#)

7 Among stadartt tam on Bd fnnctlons may be cIt* h-. h-felsen. Handf.mch der Theorie &r Cylinderfnnktfonen-Tenlm er, NW; Gmy
and Matthews, l’rfatkn M Besse3Fnrwtkm& IkeMQlan, L=, W. E. Byezly, Fonrf&s %fes and Spharfeal Harmm& ,che.p. mGfiQlf02:
Je,hnke and Em@ Fnr&Uontafe@ SecKcm~ Tenbner, lW2.

‘m ~th~~~ I,P. ~, L% 8, p. ~ MS.
s Jahnke and Emdq !?umktfonents.fain, p. 134of 19WedlUon.

.- .

—

.-

.
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by virtue of the properties of Bawd functions that d JO (x)/dz = –J, (z) or d ~. (x)/clz = – H, (z).
ln order that equa~ions (52) maybe satisfied,

aJ1(illl)
‘“w

and A must fulfill the condition 8=80 when A= ~.

~-~ Hl(iI.QJO(iIJ)–J,(ip,)HO(i/J)
o,H1(ipl)J’o(i/.q) –e7,(ip.JHo(i@

For the particular purpose of this section, it is not necessary

(54)

(55)

to tabulate numerical values
of equation (55) and m-ap ~he temperature distribution in the h. The object sought hero is
an expression for fin effectivenws, defined as in the preceding sections. The heat which would
be dissipated by the fi shown in Figure 7 to air at temperature zero if the fin surface were all
at temperature 80would be (per unit length of fin per unit time)

whiIe that actually dissipated is

J

“’. dx
2q —

o C05 a

from which it follows that fin tiectiveness f is

From equation ‘(48)

(56)

(57)

There are two ways of integrating (57), which are in principal identical, and of eaurse
kad to the same result. One is to substitute for I?/@.tie va.he given by equation (55) and
integrate the resulting expression by using as a reduction formula

$ [zJ,(z)I=zJ,(z), and likewise for H,

and the other results from noting the identity

d dg() d% de
G ~aj -F @+&

From equation (49)
ii?8 d!l

Pe=P@+&

whence

S“’’”=J+%)=%
Also, from (52), ~ vanishes for P = ~, whence

(58)

In computing numericaI values with equation (58), the vk.lues of p, and p, may be obtained
from equations (52) in tams of w’, tl, and a, the geometrical constante of the fin. Where the
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fin extends to a sharp-dge intersection of its two sloping surfaces, t,= O and therefore PI= O

and I.+=26 @’== 21\qw’/k sin a. The function HI is infinite for zero viiue of the argument,
whence for PI= O it is necessary to consider (58) in the form gi-ren below to avoid an inde-
terminate co/ca.

(59)

This special case, a fi extending to a sharp edge, could, of course, be sol-red very much
more simply than by making it a special case of the more general probIem. Recurring to
equations (49) and (50), if the condition of solution to be met is d8/dP = O vrhe~ P =0, familiarity
with Bessel functions shows at once that an abbreviated form of equation (50), nameIy

8 =AJo(i/L)

will meet the condition stated and at the same time ha~e one arbitrary constant Ieft so that the
boundary condition at z =W may be f~ed. This method of procedure confirms wry easily
the result reached in equation (59).

For the interpretation of equation (59), substitute for ~ its value 25@, bearing in mind
that for all engine cylinder & the taper is so small that sin a= a= tan a within the accuracy

which is required by engineering practice. Th’e value of a is then approximately ~ ~/w, and
.

if we denote by t. the meam thickness of the fin which tapers uniformly from tz at one edge
to zero at the other, then a= &Jw. (h this case, w’ md w are identical.) The reduced expres-
sion for equation (59) is

_, L@&)

‘=wl/g Jo(i2wJ’gJ

(60]

and expresses the tiectiveness of a wedge-shaped b in terms of its physical and geometrical
characteristics.

FoIIowing the general plan of this paper, the next step is to ascertain the &erence between
j computed by the =act formula (60) and a due f’ which would result from employing the
very simpIe expression (5); in other -words, assuming that acwedg~aped fin of moderate
taper functions nearly enough like a partdlel-sided one to permit of using the formula developed
for parallel sides and then making a correction for the error introduced by this procedure.

Rewri~~in terms of a,

(5)

(61)

in which it is seen that y is an explicit function of the product aw just. as is f’, so that the two
functions ma-y be compared at any desired point. The difference is about 6 per cent for aw = 1;
about 16 per cent for am= 2; and 25 per cent for aw= 3. The fin dimensions commonly em-
ployed are such that aw probably ne~er -ceads 2 and is pretty generdl~ less than 1. A com-
parison of the two functions is pIotted as Figure 8.

It is reasonable to suppose that in aII cases a trapezoid seotion fi would &fFer Iess in be-
havior from that of the comesponding rectangular section h than would a trianggar section fin
of equiwdent mean thickness and width, so that in using the simple expression j‘ for computing
tiectiveness of wedge-shaped fins, the mwzinmm error occurring would be that corresponding
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to the difference between the two curves of Figure 8. It is therefore possible to use the eimpIe

formula and apply a correction with a fairly accurate degree of approximation, estimating the
~mection from the relative approach to a rectangle or a triangIe of the fin section under mn-
sideration. A more exact but less convenimt procedue iS h Compile a table or set of curves
giving the exact correction uder various CirCUU~~@S. SU~ a set of CLWVeSforms I?iie 9.
The derivation is as follows:

The taper of a k maybe ~pre=ed ~ t- of the fi width and the ratio of its thickness
tit the tip (tl! @ 7, b ‘k ‘em ‘iCbew ‘m”

Let

X=& (62)

~%zaiza“
q - Coeftkknf of sunbce heof dmr.jpoiion.

3.41 I I [ 1 1, I 1 I 1 1 1 - 1 1

I
! 1 1 , $

t I I I I I I I I
I I i I I I I I I I I I I I I 1.

0 .4 .8 I!! 16 2~ ~ 28
Vflues of aw’

~G. S. Comparison of the two functfonr wbfch expr- effeetiv~
new of a trfsngnlar seation and of a rectangular section fm. J fe
the functional agmboI for Bessel% fnnctfon of the prtmary typ~
I fs the complex symbol .@. Jo with an hnagfnary argument
fs a real fnnotion, snd JI fs a pure hnaghmy, so that IJI Is
a rd functfon.

Then a, of Figure 7 may be expressed in terms of w, tm,and h and with no approximation
other than sin a= t au ~, substitution in the expressions (52) which define K1and I%lead ~

a.

“= la:h–4 d
h l–~ (1–x) .%– la_w~——

4–
2 –i (63)

where a has the vaIue used in all the previous developments, namely, _&/ktm. siice ~m/~ is
—.

always small with respect to unity,

(64) “

and the term in braokets can usually be omitted. There is a I to I corrw.po~dence between
values of aw and approximate values of fin eflectiv~ess, so that for any desired fin effectiveness
a suitable value of aw may be read from the curve of Figure 3, and by means of the relations
(63), (64), ~, and k may be tabulated as functions of k for any effectiveness. Values of P, and
~ so obtained are then substituted in equation (58) and a comparison between the resulting .f
and the approximate effectiveness j’ will give the ,corrections, as a function of the taper ratio A,
which must be applied to the approximate function j’. Such curves are plotted’0 in Figure 9.

ltTlr~~~~lem~~~ pm~ure fStome ~tw VPJUm Of A and fm a S&S o[eusb && determine the”-tkm Se 8 fUnCttOnor aPP~tmete
effectiveness. This prccednre has bean sdopted foz Figure 10, where it fs only necawmy to show the curves x..O, A-O.6 and x=O.75to perr.rrlt Of
sutlkiently —te InterpoIetIon, by fnspwtkm, of any other enme of the famfly for the purpose of obtsirdng the correction tn f’ for any tal er at

“ any eilectlveness.

d
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4. ctEcuMmmENTrALm?w.

For a circumferential fin of considerable width on the a~erage size engine c@nder, it is not
to be expected that relations developed for a long, r@m@ar fi vzilI hoId without appreciable
correction. It will be shown here that the magnitude of the correction is vrelI within the Iirnits
which justify the procedure of empIoying the approximate formtia, corrected -when necessary,
in preference to using an exact solution of this probIem with its at twldw~t complications. The
difference in the physical behatior of a given area of circumferential h and of rectangular
plate is perhaps most easily pictured by focU@ attention on the mean circumference. ‘i’i%en
the iin width is not d with respect to the radius of curvature of this mean, there is go~m to
be a considerable difference between the fin area, for a given Iength of this median, which is
within the mean circumference from that area outside it, whereas in a rectang.gar plate, the
median bisects the mea. With such a difference in area distribution, it is clear that the tem-
perature of the median is not going to be by any means equaI to that which is found at the
median of the rectangular plate. The use of the rectangular pltite formulas is therefore more
in the nature of analogy than of approximation, but it is ne~ertheless cormenient.

FIG. Q.—Tadg&ped Ens. Carredfons to approxhnnti ellxtfrarws

f ‘ - T*”

~ further picture which may assist in visualiz~~ the physical processes inYoIwd comes from
comparing the way in which a circumferential fin differs from a corresponding straight one to
the way in -which a tapering fin dtiers from its anahgue of uniform thickness In the Iatter
case! we have practicality identical surfaces tith differences in the metific conducting mea .
from root to tip of fin. Since the metal near the tip is less usefuI, remo~~ a certuin fraction
there and adding it comspondingly at the root where it is most needed redts in a b somewhat
more effective than the sme a-rer~me thickness fin with no taper. II, now, we take a stra&ht
fin of uniform thickness and bend it around an arc, we do nothing to alter the metallic conduc-
tion process, but do change the disposition of surface. We get a less proportion of the surface
in near the engine cylinder, where the temperature head is greater, and a correspondingly
greater fraction out at the rim, where it is Iess u#uI. ~ccordingIy, the cur-red fin is slightly
lees effecti~e than its straight analogne. The possibility of certti similarities in the mathe-
matical treatinent of the two corrections, taper and cur~ature, thus prfients itdf. ~s”a matter
of fact, it turns out that the mathematicrd functions m-rolved are practically identicd, although
leading to corrections in opposite directions, as the above picture indicates. The taper cor-
rection which has just been developed in detail and found to be always a positi~e correction to
Y is paralleled by one for curvature, al-ways rt~ative. -

The notation for *e circumferent.id fins is as follows:
R. =inner radius (nameIy, the outer radius of the engge c@nder).
R,= outer riklius (extreme h radius).

t= fin thickness, assumed uniform.
W= ~c – & (h width].

r, 13,coordinates (poIar) of any element. of the ti.

—

-.

.
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The other symbols empIoyed retain the s~me significance as in previous sections. Tho
heat dissipated from the edge of the fin is to be taken into account by the method developed in
section (2) of this paper, adding t/2 to the fin width. The exact correction, to give a surface iden-
tically half that of the edge, would be

but the sum of the terms following 1 is usually less than 1 per cent, und t/2 is in itself only a
srndl correction term, so that the omission of these terms causes no approciabIe error.

The fundamentfil equation of heat transfer in a metaI, expressed in plane polm coordinates,
combined with the condition for surface dissipation from both sidw of each demon t of fin
surface, is

(8, temperature at any point; q,
t, thickness, assumed uniform).

coefficient surface heat dissipation; 2, thermal conductivity;
The bounda,ry conditions me

(60)

O=O. when T=R.

Equation (65) is similar to (49), in fact identical with it if ~/a bo substitute for r, whence
the form of solution is given by equation (5o) or equation (53), and since the boundary condi-
tions (66) are identically those of equations (52) with appropriate values of w instead of PI
and Pa, it is unnecessary to discuss any details of solution of equation (65). The result may
be taken by inspection from equation (55),

H, (iuR’J Jo (iar) – J, (iaR’J Ho (iad
*= *“H, (iaR’J JO (iuRO)– J, (tiR’r) Ho (hzRO~ (67)

Following the usual procedure for expressing the effectiveness of the flu surface, divide
the heat dissipated by the fin, namely,

sR/
2q 0.2medr

l?.

by that which would be dissipated by an equal area of cylinder wall at temperature O., namely,

(68)

and upon reducing this expression to an integrated form, employing a process identical with
that used for reducing equation (57), there results as the expression for effectiveness of a cir-
cumferential fin,

i J~hRo) Hl (iuR’1)–i J, (iaR1t) HI (hR.)f .a+,R*) –
J. (~OTH, (iaR,’) – J~HO (iaRO)

(69)

It is convenient .to have the result stated in terms of the fin width and ratio of the inner
and outer fin radii.

Let
R

P=ti’
(70)
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From these definition, it folIoms that
,

&~= ~P
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&=~
, l–p

Equation (71) may be used to give f as a function of ad for my specifhd value of P, or to
give f as a function of p for a specif%d value of aw’, as maybe desired. Thus, two processes are
open to choice for the tabulations or charts ta give the corrections to appIy to the approtite
ralue of fln effect.keness, defied, as preciously, to be the function f’ = tanh aw’fuw’ to take ●

account of the circumferentiakshaped b. h Figures 11 and 12 wilI be found sets of curves
plot ted by both processes.
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lV. RECAPITL~ATION OF MK1’HlUMA!17C&DERIVATIONS-CON”CLUSIONS.

3f&ng four generaI assumptions of physical nature which are stated and fully discussed
in the earIy paragraphs of Section 11 of this paper, it is found that the fundamental mathematics
of heat conduction lead to the expression

tafi awr /3
—

f’= =.W1 where w’=w+~ and a=
1:$.

w= width of il.n. ●

t= thiclmees of fin.
q= coefficient of surface heat dissipation, units of heat per unit time per unit surface per

unit. difference in temperature between the flu surface and the air strewm into which the heat
is dissipated.

k= thermaI conductivity of the fln material, units of heat per unit time per unit cross-
sectionfd area per unit temperature gradient.

f’ =fi effectkineas; the ratio of the heat dissipated by the h to that which would be
dissipated in the same time b~ an equal surface all at a t~perature identical tith that of the
base of the fin; i. e., the temperature of the engine cylinder wall along the line of attachment of
the fin.

The abo-re expression for fin effectiveness -would be rigorously exact under the following
assumptions:

(1) The temperature across the h thiclm~ is constant; i. e., flovi of heat is linear from
base toward tip, with inappreciable” crorsflow” in the direction of smallest dimension of the b.

I’Z) me k is so 10% with respect to other two dimensions that the heat di&pation from
the exposed ends is an inappreciable fraction of the total.



702 REPORT NA!C1ONALAD~SORY COMMI- )?ORAERONAtJTICS.

(3) Conditions at the exposed edge are such that the heat loss therefrom can
for by adding to the real fin width one-half of the fin thickness to get a fictitious
in the equations and treatima the exposed edge as though perfectly bhmketed.

be accounted
width for use

(4) ‘The temperature di=tributi& pieva%g at th~b&e of &e fin is that of uniform, con-
stant temperature.

(5) The fin thickness is uniform.
.

(6) The fin is of rectangular contour.
By remov~~ restrictions expressed in assumptions (1) and (3) and setting up the equations

to express exactly the thermal behavior of u fi which obeys the remaining four conditions, a
solution may be obtained which indicates the correction necessary to apply to the function j’
quoted above to take account of the error introduced by making assumptions (1) and (3).
Were this exact solution somewhat more mazmgeable, it is obvious that proper procedure
would be to employ it directly in computations rather than as a tool to construct corrections to
an inexact formula. However, it is found to be extremely complicated and unsuited to repeated
use.. Fortunately, it proves’ that for any combination of geometrical and physical properties
likely to characterize an engine cylinder fin, the correction will be within 1 per cent, and for the
usual present-day dwigns it is only 0.1 or 0.2 per cent. It is therefore entirely negligible in
comparison with other errors inherent in applying the mathematics to practical problems.

In view of the foregoing, it is quite justifiable for all practioal applications of these mathe-
matical developments to ne@ect entirely the slight discrepancy between the hypothcticrd con-
ditions outlined in assumptions (1) and (3) and the real conditions which, do occur. It is
entirely satisfactory to employ the formula based on the assumption as a formuIa representing
very exactly the actual fin performance. Assumption (2) is also obviously valid within satis-
factory limits for any numerical work with radial fis (always long). For circumferential fins
any error due to the assumption merges into that discussed in confection with assumption (L I).

The limitation expressed by assumption (4) also vanishes without requiring any modifica-
tion of the function j’. Provided that we can predicate the conditions outlined in the first
three assumptions and assume the rectanguhu contour imposed by (5) and (6), it is a compara-
tively simple mathematical problem to derive the expression for & effectiveness when the
temper&ture distribution along the ti base is described by any arbitrary function of the coor-
dinate parallel to the fin length. The result is tanh aw’/aw’, or, in other words, the fuction
already quoted is equally applicable for uniform and nonuniform base temperature. .

The assumptions numbered (5) and (6) are fulfilled by few, if any, of the fins occurring in
practice, and it is therefore of prime importance to ascertain how large a deviation from the
conditions described in these assumptions may occur before the use of a formula based upon
them becomes absurd. . The exact solution for a tapered fin which is straight in its length
coordinate (i. e., a trapezoid section right prism) or for a unif orrnly thick circumferential fin is
not a problem offering serious mathematical ~culties, nor is the result of either solution a
prohibitively complicated expression for use in direct numericaI application. But the functions
occurr~~ (Bessel functions of both kinds with imaginary arguments) are distinctly unfamiliar
to others than specialists in mathematics, and tables of their values for numerical work are not
always conveniently accessible. It has seemed very desirable, therefore, to give in this paper
values of the differences between the exact solutions for these cases and the function
tanh aw’/aw’, so that the latter expression might always be used as the baaia of a computa-
tion and corrections applied for its error.

For the trapezoid section prism & the results are expressed in terms of the h width (w)
and a taper ratio defied as the ratio of the thickn~ at the tip (Q to that at center (t~, a
uniform taper being assumed. Designating this ratio by k, it is A= tlft~.For a sharp-edge
lin h = O, while the parallel surface h has A= 1. The .ti width w is corrected tow’ by adding
tl/2, aE in the cases discussed previously. The process of computing iin dlectivenees is the
following: (lompute the function tanh aw’/aw’, using (in ‘~a”) for the value of t, the mean fin
thiclmess & Then, from this approximate value of effectiveness and the value of A, interpolate
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on the family of curves forming Figge 9 or those forming Figure 10 and read
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off a quantity to
be added to the approximate elfect.h-erwas. This will give the fin effectiveness as if computed
from the exact Bessel function formula. The limitations to accuracy of the method are those
imposed by the curves of Figures 9 and 10, which have been computed to the l@hest accuracy
convenient for the tables of &ssel functitins, etc., usually at hand. GeneraIly speaking, this
was within 1 part in 1,000 for each individual interpolation made, and for the result when all
factors and terms are brought together it is quite certain that the correctedfl is reliabIe within
1 per cent, probably within a few tenths of 1 per cent.

For a circumferential h, the process suggested is Tery .simil&r to that just outlined for the
correction on account of taper. Results are expressed in terms of h width w, v&his the dif-
ference between the outer and inner fin radii and a ratio p of the inner radius of curvature to the
outer. It is obvious that for ~ery srmdl values of p, namely, the configuration approaching a
circular pIate with no hole (p= O), it would be absurd to use a formula based upon a Iong, ret-
t~.~ar fi ~d the “ Comections” to such formula which have any real -mlidity as corrections
are limit ed to the larger values of p. Between the -raIuw p = 1 and p = 0.5 the method is appli-
cable, but toward the Lmrer value of p the corrections become large and likewise leas certain.
.4.fter increasing w by half the fin t.hiclmess to w’, compute tanh aw’@.u’ and then in terms of
this value of approximate effectiveness and P, the curvature ratio, make use of Figure 11 or 12
to ascertain the correction to be added to the approximate vaIue to obtain the true value of fin
effectiveness. It may be noted that this correction is aIvmys negative; i. e., a circumferential
iin is Iess effective than the value computed from tanh aw’/aw’.

Summing up the foregoing paragraphs vcitih respect to the difference between conditions
which would meet assumptions (1) to (6) and the conditions which actually prevail, it is to be
noted that ody the cliiTerences concerned in (5) and in (6) have appreoiabIe effect upon com-
putations for the fins of internaI-combustion engines. In case both assumptions we vioIated
at once, namely, a tapering fin of circumferential type, two corrections may be appIied to the
approximate function, with a somewhat Iess degrw” of accuracy than pertsins to either correc-
tion alone. The correction for taper -WCSdetermined on the hypothesis of no circumferential
curvature and the correction for curvature on the hypothesis of uniform thiclmess, whence it is
cIear that if both factors are concerned the corrections applied by this method are not exact.
The deviation is a second-order error and is usually too and to be -cant in industria3
application of such a computation.

V. EXAMPLES OF COMPUTATIONS.

For the purpose of illustrating the ease of using the for.ndas whose derivation has been
discussed above, a few examples are appended. These are selected from two well-known
aviation qjnes-the Gnome, which has steeI b, and the Lawrence, with sIuminum fins.
.$ long, straight fm of the same width and equident. uniform thickness is used for an initial
exampIe, followed by approximating to (a) the taper, (b) thq annular shape, of the real emgine
tin. For physical interpretation of the results of the computations, the definition of effective-
ness must be borne in mind. b effecti~eness of 85 per cent means that each small area of iln,
say, 1 cm.z or 1 sq. in., is equkdent in heat dissipating power to 0.85 as much area alI at a
temperature idenficaI with that of the engine cylinder wall in that vicinity.

The computatioti illustrate in a convincing reamer the relative unimportance of high
thermal conductivity for fin metal. WhiIe the difference h effectiveness of the steel and alumi-
num he is quite appreciable, nevertheless it may be noted that the eflectheneaa of steel b,
very thin and yet reasonably wide, is high enough that for the conditions aasumed in these,
exampIes it is comparable to that of aluminum fis having fi-ie times the thermal conductivity
of the steel ones. Thus, no great incentive exists, on this score at least, to employ rn@taIs of
very high thernd conductivity.

—
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13xAMPLE 1 .—S!eeljin, long, rectangular, uniform Wi.chze88.

Width, 1.60 cm.
Thickness, 0.08 cm.
Thermal conductivity of steel, assume 0.10 cgs. units,
Surface dissipation coefficient-assume g= 0.003 cgs. units, corresponding probably to a

free-air speed in the vicinity of the engine of 40 to 50 meters per second, 90 to 110 mihx per
hour.

w’=w+~= L 60+0. 04=1.64
●

4+J5- 2 x 0.003a.=
t- 0. IOXO. 08

- Jo. 75=0. 866

awl= 1.420
tanh aw’ =0. 8896

tanh aw’=o 626

f= aw, .

The effectiveness of such a stied fin is thus abcmt 63 per cent.

EXWLE 2.—Steel$n, long, rectangular, tuperhg.
Width 1.60 om.
Thickness, 0.05 cm at tip and 0.11 cm at root.
Thermal conductivity of steeI, wmme 0.10 cgs units.
q, assume 0.003, as in Example 1.

w’=w+~= l.600+0.025=1.625 cm.

aw’ = L408
tanh aw’ = 0.8870

tanh aw’ -o ~30
f= awl .

The taper factor k= tl/t~is0.05/0.08=0.625 and from Figure 10 the correction for a taper
factor 0.63 and approximate effectiveness 0.63 is .0.03,. This correction added to 0.630 gives
0.66,.

The effectiveness of such a steel finis therefore 66 per cent.
It is perhaps worth whlIe to ihstrate the computation of effectiveness of a tapering fin

directly from the exact equation (58) which has furnished the basis of the corrections plotted
as Figure 10.

U (iPl) 171(&) –iJ, (ip,) HI (i~)
f= ~ % B: (iP,) Jo (i~,) +L7, (k) @ (id

The half angIe a (= tan a) of the wedge is 0.0187.
From this, by equations (52)

PI=2.90
&=4.34

Jo (ip,) = 15.17
WI (’ipl) —– –3.613

iJ1 (iPz)= – 13.30
{Ho (iA2) = 0.00487
‘IHI (ipl) = —0.0288

H, (ip,) = -0.00540

f= 0,831, (-3.613) (-0.00540) -(- 13.30) (-0.0288)
(–O. 0288) (15.17) + (–3.613) (0.00487)

f= 0.665

. .

11J&me md IMn@ Funktionentafelq pp. 1*185, IWOeditbn.
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E=WLE 3.4feelLfin, circurnfmm$ial, ffiicknew umj%rm.

Width, 1.60 cm.
Thickness, 0.08 cm.
Inner radius, 5.65 cm.
Thermal conductivity of steel, 0.10 cgs. units.
q= 0.003 Cgs. units.

.

From Example 1 the fist approximation b effectiveness is 0.626. The outer & radius,
7.25 cm. plus half the thicknes, is 7.29, whence the circumferential curvature factor p = RO/R’f is
5.65/7.29, or 0.775.

From Figure 12 the correction for a circumference factor of 0.78 and approximate. effective-
nws 0.63 is – 0.032. Adding this to 0.626 gives 0.594.

The effectiveness of this h is therefore approximately 59 per cent.
To illustrate the computation of the above example directiy from the axact solution for an

amular fin, equation (71), instead of through the medium of a correction curve based on this
equation, the following figyres are summarized:

From example 1, aw’ = 1.420
p = 0.775

l–p=O.225

“’(bw’lfa=246’
‘i’@’’’f=P)220u0u

()‘k w’
CiJl — = – S4 (estinmml,1–p

“’H”(tiw’=P)=000265
HI

()
hwr
— = – 0.000605l–p

, H+zw+)=-o.m

9

aw’ if+ p) = 0.615

f= 0.615(–22.00) (–0.000605) - (-S4) (–0.00291) -0597
(24.69) (– 0.000605)+ (–84) (0.00265) .

~OTE.—The value 84 for iJ, ({ 6.32) can not be ascertained with any precision, but by using
an identicil value in both numerator and denominator, the accuracy of computation is not
vitiated more than I or 2 parts in 500 by the probable error. The agreement of 0.594 with 0.597
is well within the Limit to be expected in the use of Figure 12.

~lth a steel b having the taper of Example 2 and the curvature of Example 3, with the
remaining characteristics the same as those taken for dl three exmnpIesj the eflectkeness would
be approximately 0.594 (Example 3) plus 0.034 for taper, or 0.63.

5M013-2~
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EXAMPLE 4.—.4l~~~n~~j~, long rechgukm, uniform thidcneiw.

Width, 2.6 cm.
Thickness, 0,23 cm.
Thermal conductivity of aluminum, 0.50 cga units.
q= 0.0030 cgs units (probably corresponding to free air speed in vicinity of engine cylinder

of 40 to 50 meters per second —90 to 110 miles per hour).

w’=w+~=2.500 +0.115 =2.61h

u~= J“-sX 0.003 —
a = L*

0.0521 = 0.228
0.50 X 0.23=

awf = 0.597
tanh aw’ = 0.535

f =0.896

The effectiveness of such a fin is 90 per cent.

EXAMPLE 5.—Aluminum $n, 7ong, rectangular, wedge-shaped.

Width, 2.5 cm.
Thickness, 0.36 cm at baso and 0.10 at tip, with uniform taper.
Thermal Conductivity of dnninum 0.50 cge units.
q= 0.0030, as in Example 4.
Average thicknffls is 0.23 cm, whence, by Example 4, the value of a is 0.228.

w’=w+$=2.500 +0.050 =2.55

awf = 0.582
tmh aw’ = 0.523

f’=o.9oo

This is the fit approximation h the value of effectiveness. The taper ratio A is tlft~,
nameIy, O.1OIO.23, or 0.435. From F@re 10 the taper correction fork= 0.43 and f’ u 0.90 is
+0.01 7, wbch, added to 0.900, is 0.917. The effectiveness of thk. finis therefore 92 per cent.

~ a check, it is not very tedious to compute the effectiveness directly from the exact equa-
tion (58), the one used in this paper, to determine the corrections plotbd in Figure 10.

The half rmgIe a ( = tan a) of the wedge is (0.180 – 0.050/2.50=0.052.

p,= 0.648
/.L%=1.264

J,(iP,) = 1.439
iJ,(iJbJ = –0.3414
al (il.i,) = – 0.7669
iHO(iyJ = 0.185
H,(ipJ = – 0.745
ll,(ip,) = – 0.250

~=2.150(- 0.3414) (- 0.250) – (- 0.767) (- 0.745)
– (0.745) (1.439)+ (–0.3414) (0.185) ‘0 ’20
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ESAMPLE 6.—Aluminum $n, circumfewti”al.
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~Ck&!.S, 0.23 CIIl lU1.ifOrm.

Inner b radius, 6.5 cm.
Thermal conductivity of ahminum 0.50 cgs units.
g=o.0030 cgs units, as in ExampIe 4.
From the results of Example 4, the &t appro&ation to the effectheness is 0.896. The

outer fin radius is 9.o cm and corrected for haLf the fin thickness becomes 9.11. The inner
radius being 6.5, the ratio P= RO/R’r= 6.50/9.11 = 0.714. From F~e 12 the correction tifi =
0.90 for a circumference factor 0.71 is – 0.017, to be added to 0.896, giving 0.879.

The effectiveness of such a fin is therefore 88 per cent..
Computation directly from equation (71) is as follows:

From ExampIe 4 the value of aw’ is 0.597.

p = 0.714

=W’+p-1“490
awr— = 2..087
l–p

..——

‘Q(tiw’i%)=’.638
ti,()iawt

— = – 1.?24
l–p

‘J4iaw’fi)=-o’7’8
‘H’J(iaw’+P)=O-2’66x:

()iawf‘ l-–—p
= –o.1247x~ r

H;;”w’ )
— = –0.2814x~
l:p r

*j ‘1.395

(– 0.9718) (– 0.1247) : – (– 1.724) (– 0.2814) :

‘= 0.873
‘= 1“395 (1.63s) (–0.1247) :+ (–1.724) (0.2166):

VI. APPLICATIONS OF THE EQUATIONS.

The applications of the foregoing equations to the problems of air-cooled engine design are,
of course, dependent upon possessing reliable data respecting the physical quantities which
appear as constants (mathematimly speaking) in the equations. The limitrbtions in t.hk respect
particularly regarding q, the coeftlcient of surface heat transfer; have already been discussed in
““theopen@ pages of the paper. Among the application which suggest themselves are:

(a) Prediction of the cooling power of any specified size and spacing of flna for gi-ren condi-
tions of cylinder temperature, air stream, etc.



708 REPORT NATIONALADVISORYCOMMITTEE FOR AERONAUTICS.

(b) Computation of optimum dimensions of fins” to meet any specified reIations which are
not mutually inconsistent. An exampIe of this is minimum weight compatible with a given
cooIing requirement, or head resistance, or combination of the. two.

In applying the equations to compute optimum dimensions, it must be borne in mind that
too much must not be expected in the way of results. There are always a number of conditions
to be met which are conflicting and for which a rigid mathematical speciflcntion of all would
render the pioblam unsolvable. In fin design these include maximum cooling power, minimum
weight, minimum head resistance to the air stream, adequate strength to withstand crushing
under rough handling, a choice of metal and geometrical form consistent with the possibility of
manufacturing with reasonable convenience and without prohibitive cost, etc. The engineer
has no grounds for expectii mathematics to furnish a single inviolable solution for the optimum
dimensions of the fin that will meet best such an array of specifications, but he does have the ,
right to expect mathematics to furnish him definite relations in which he can weigh the various
factors. Then, according to his judgment of relative importance of such factors, he can select
the design which he considers best. It is the purpose of this paper to supply d&nite relations
respecting the effectiveness of cooling for fins of ordinary type.
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